Parameterization scheme of the sea surface drag coefficient considering the influence of wave states and sea spray stress

Author:

Zhao Zeqi,Shi Jian,Wang Hanshi,Yi Zhenhui,Zhang Wenjing,Zhang Xueyan

Abstract

The drag coefficient of the sea surface is crucial for the exchange of momentum between the ocean and atmosphere. The wave state significantly influences the variability of the drag coefficient. In the past, researchers commonly employed single-parameterization methods to describe this influence. However, the influence of wave conditions on drag coefficient is complex and variable, and it is difficult to accurately describe it with a single parameter alone. Wave age represents the ability of wind-induced waves to input energy, while wave steepness reflects the stability of the waves. By simultaneously considering wave age and wave steepness, a more accurate characterization of the dynamic nature of waves can be achieved. Additionally, the presence of sea spray profoundly impacts the distribution of the momentum flux between the ocean and atmosphere, thereby influencing the drag coefficient of the sea surface. In this study, we established a novel sea spray generation function that bases on both the wind speed and wave states (wave steepness and wave age). Considering this function, the momentum flux of sea spray droplets was analyzed under different wave states. Moreover, with increasing wave age or wave steepness, the effective sea surface drag coefficient is attenuated at low to moderate wind speeds. Considering the challenge of simultaneously obtaining wave age and wave steepness data, this paper proposes a relationship equation between the two wave state parameters. When the wave age is greater than 0.4, the correlation between the wave age and the wave steepness is strong. As the wind speed increases from low to high, there is a noticeable decrease in the effective sea surface drag coefficient with the corresponding increase in wave age. When the wave age is less than 0.4, the wave steepness reaches a maximum value, and the effective sea surface drag coefficient increases with the increase of the wave age at medium and low wind speed. With further increases in wind speed, the momentum flux derived from the air also increases. Simultaneously, the effective sea surface drag coefficient exhibits a decrease as wave age increases.

Publisher

Frontiers Media SA

Reference61 articles.

1. Sea spray and the turbulent air-sea heat fluxes;Andreas;J. Geophys. Res. Oceans.,1992

2. A New Sea Spray Generation Function for Wind Speeds up to 32 m s–1;Andreas;J. Phys. Oceanogr.,1998

3. Spray stress revisited;Andreas;J. Phys. Oceanogr.,2004

4. The signature of sea spray in the hexos turbulent heat flux data;Andreas;Boundary-Layer. Meteorol.,2002

5. The spray contribution to net evaporation from the sea: A review of recent progress;Andreas;Boundary-Layer. Meteorol.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3