The Impact of Swirls on Slurry Flows in Horizontal Pipelines

Author:

Shi Hongbo,Yuan Jianping,Li Yalin

Abstract

In deep ocean transportation pipeline, the swirling internal flow has a significant impact on the marine minerals transportation efficiency and safety. Therefore, the present work investigates various swirl flow motions for the slurry transport characteristics of the multi-sized particulate flow in a horizontal pipeline. Since the internal flow is a liquid-solid-solid mixture, a steady-state three-dimensional Eulerian-Eulerian multiphase approach in conjunction with the k-ω SST turbulence model is implemented for numerical simulation in the commercial CFD software ANSYS FLUENT 17.0. Numerical predictions of the mixture solid concentration distributions are generally in good conformance with experimental measurements. It is clearly revealed the transition of flow regime from heterogeneous to pseudo-homogeneous with the increasing level of swirl intensity at inlet. Compared to non-swirling flow, the swirling flow is of benefit to the multi-sized solid suspension capacity and the transportation efficiency. Moreover, the intense swirling vortex results in a strong influence on the characteristics of the lubrication layer formed by fine solid particles near the bottom of the pipe. These results provide valuable insights regarding the influence of swirl flow on the transport process for deep ocean mining.

Funder

National Natural Science Foundation of China

Senior Talent Foundation of Jiangsu University, China

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3