Potential Applications of a Novel Ballast Water Pretreatment Device: Grinding Device

Author:

Hyun Bonggil,Cha Hyung-Gon,An Yeong-Kyu,Park Yong-Seok,Jang Min-Chul,Jang Pung-GukORCID,Shin Kyoungsoon

Abstract

To investigate the removal efficiency of the grinding device (GD) as a potential replacement for the pretreatment filtration device of ballast water, solid grinding and viability experiment were conducted according to a treatment flow rate of 5 tons (Pilot test, PT), and 200 tons (Full-scale test, FST) per h. The solid grinding effect was observed in the particle size of ≥25 μm. Under the high-turbidity conditions (>300 mg L−1), no change in pressure (0.98 kgf/cm2) or stoppage in the GD were observed. The removal efficiency of the GD for >100 μm organism was determined to be 100% in both PT and FST, whereas the removal efficiency was determined to be 93% and 87% in the PT and FST, respectively, for the <100 μm organism. There was no statistically significant change in the removal efficiency stored within 2 h after passing through the GD, while the removal efficiency was determined to be ≥99% in the sample stored for 120 h. Future study is necessary to determine the additional removal efficiency according to the storage period after passing through the GD, but the GD might be utilized as the pretreatment device for the ballast water management system.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3