Assessment of phytoplankton invasion risks in the ballast water of international ships in different growth conditions

Author:

Hyun Bonggil1,Baek Seung Ho2,Shin Kyoungsoon1,Choi Keun-Hyung3

Affiliation:

1. Ballast Water Research Center, KIOST, Geoje 53201, Republic of Korea

2. South Sea Environment Research Center, KIOST, Geoje 53201, Republic of Korea

3. Department of Oceanography and Ocean Environmental Sciences, College of Natural Sciences, Chungnam National University, Daejeon 34134, Republic of Korea

Abstract

The possibility of successful invasion by phytoplankton assemblages in the ballast water of twelve international commercial ships was investigated. Various scenarios of port water dilution rates with a time delay for the exponential growth of the plankton were considered. Most of the phytoplankton in the ballast water samples originated in countries such as Japan and China, and diatoms dominated (>90% abundance) these phytoplankton communities. To assess their survival after discharge in seawater under various conditions, the phytoplankton were reintroduced into ballast water, pier-side water, and nutrient-enriched f/2 medium and incubated at various water temperatures and salinities for 2 weeks. The growth of the invading phytoplankton was influenced by the time delay for regrowth when introduced in the new seawater conditions. The results also suggest that once introduced by ballast water, the growth of a phytoplankton community may depend more on the nutrient levels and the water temperature and less on the salinity. Although we did not consider parameters such as competition with native species and predation, both high nutrient concentrations and water temperatures may significantly shorten the period before exponential growth occurs, which increases the invasion potential.

Publisher

Michigan State University Press

Subject

Management, Monitoring, Policy and Law,Ecology,Aquatic Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Potential Applications of a Novel Ballast Water Pretreatment Device: Grinding Device;Journal of Marine Science and Engineering;2021-11-02

2. Long-term Changes of Disinfection Byproducts in Treatment of Simulated Ballast Water;Ocean Science Journal;2020-06

3. Marine Environmental Characterization;Synthesis Lectures on Ocean Systems Engineering;2020-05-26

4. HEALTH ASSESSMENT OF THE AQUATIC ECOSYSTEM IN AIYI RIVER;Applied Ecology and Environmental Research;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3