AUV Obstacle Avoidance Planning Based on Deep Reinforcement Learning

Author:

Yuan Jianya,Wang HongjianORCID,Zhang Honghan,Lin Changjian,Yu Dan,Li Chengfeng

Abstract

In a complex underwater environment, finding a viable, collision-free path for an autonomous underwater vehicle (AUV) is a challenging task. The purpose of this paper is to establish a safe, real-time, and robust method of collision avoidance that improves the autonomy of AUVs. We propose a method based on active sonar, which utilizes a deep reinforcement learning algorithm to learn the processed sonar information to navigate the AUV in an uncertain environment. We compare the performance of double deep Q-network algorithms with that of a genetic algorithm and deep learning. We propose a line-of-sight guidance method to mitigate abrupt changes in the yaw direction and smooth the heading changes when the AUV switches trajectory. The different experimental results show that the double deep Q-network algorithms ensure excellent collision avoidance performance. The effectiveness of the algorithm proposed in this paper was verified in three environments: random static, mixed static, and complex dynamic. The results show that the proposed algorithm has significant advantages over other algorithms in terms of success rate, collision avoidance performance, and generalization ability. The double deep Q-network algorithm proposed in this paper is superior to the genetic algorithm and deep learning in terms of the running time, total path, performance in avoiding collisions with moving obstacles, and planning time for each step. After the algorithm is trained in a simulated environment, it can still perform online learning according to the information of the environment after deployment and adjust the weight of the network in real-time. These results demonstrate that the proposed approach has significant potential for practical applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3