An Investigation of Adaptive Radius for the Covariance Localization in Ensemble Data Assimilation

Author:

Xing XiangORCID,Liu Bainian,Zhang Weimin,Wu Jianping,Cao XiaoqunORCID,Huang Qunbo

Abstract

The covariance matrix estimated from the ensemble data assimilation always suffers from filter collapse because of the spurious correlations induced by the finite ensemble size. The localization technique is applied to ameliorate this issue, which has been suggested to be effective. In this paper, an adaptive scheme for Schur product covariance localization is proposed, which is easy and efficient to implement in the ensemble data assimilation frameworks. A Gaussian-shaped taper function is selected as the localization taper function for the Schur product in the adaptive localization scheme, and the localization radius is obtained adaptively through a certain criterion of correlations with the background ensembles. An idealized Lorenz96 model with an ensemble Kalman filter is firstly examined, showing that the adaptive localization scheme helps to significantly reduce the spurious correlations in the small ensemble with low computational cost and provides accurate covariances that are similar to those derived from a much larger ensemble. The investigations of adaptive localization radius reveal that the optimal radius is model-parameter-dependent, vertical-level-dependent and nearly flow-dependent with weather scenarios in a realistic model; for example, the radius of model parameter zonal wind is generally larger than that of temperature. The adaptivity of the localization scheme is also illustrated in the ensemble framework and shows that the adaptive scheme has a positive effect on the assimilated analysis as the well-tuned localization.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical experimental research on assimilation of cloud-free radiances from fengyun-3D microwave sounding observations over land surface;Fifth International Conference on Geology, Mapping, and Remote Sensing (ICGMRS 2024);2024-07-10

2. Research on Balance Relationships in Variational Data Assimilation and Its Statistical Methods;2024 4th International Conference on Neural Networks, Information and Communication (NNICE);2024-01-19

3. Correction: Xing et al. An Investigation of Adaptive Radius for the Covariance Localization in Ensemble Data Assimilation. J. Mar. Sci. Eng. 2021, 9, 1156;Journal of Marine Science and Engineering;2022-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3