Potential Climate Change Impacts on Water Resources in Egypt

Author:

Mostafa SohaORCID,Wahed OsamaORCID,El-Nashar Walaa,El-Marsafawy Samia,Zeleňáková MartinaORCID,Abd-Elhamid Hany

Abstract

This paper presents a comprehensive study to assess the impact of climate change on Egypt’s water resources, focusing on irrigation water for agricultural crops, considering that the agriculture sector is the largest consumer of water in Egypt. The study aims to estimate future climate conditions using general circulation models (GCMs), to assess the impact of climate change and temperature increase on water demands for irrigation using the CROPWAT 8 model, and to determine the suitable irrigation type to adapt with future climate change. A case study was selected in the Middle part of Egypt. The study area includes Giza, Bani-Sweif, Al-Fayoum, and Minya governorates. The irrigation water requirements for major crops under current weather conditions and future climatic changes were estimated. Under the conditions of the four selected models CCSM-30, GFDLCM20, GFDLCM21, and GISS-EH, as well as the chosen scenario of A1BAIM, climate model (MAGICC/ScenGen) was applied in 2050 and 2100 to estimate the potential rise in the annual mean temperature in Middle Egypt. The results of the MAGICC/SceGen model indicated that the potential rise in temperature in the study area will be 2.12 °C in 2050, and 3.96 °C in 2100. The percentage of increase in irrigation water demands for winter crops under study ranged from 6.1 to 7.3% in 2050, and from 11.7 to 13.2% in 2100. At the same time, the increase in irrigation water demands for summer crops ranged from 4.9 to 5.8% in 2050, and from 9.3 to 10.9% in 2100. For Nili crops, the increase ranged from 5.0 to 5.1% in 2050, and from 9.6 to 9.9% in 2100. The increase in water demands due to climate change will affect the water security in Egypt, as the available water resources are limited, and population growth is another challenge which requires a proper management of water resources.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3