Potential Improvements in Crop Production in Egypt and Implications for Future Water and Land Demand

Author:

Ayyad SaherORCID,Karimi PooladORCID,Ribbe LarsORCID,Becker MathiasORCID

Abstract

AbstractSimilar to numerous water- and data-scarce regions, Egypt confronts a critical challenge in sustaining food production for its rapidly growing population. Consequently, the country’s water and land resources are under considerable stress and require careful management. About half of Egypt’s both annually harvested areas and renewable freshwater are allocated for cultivating rice, maize, wheat, and berseem clover. However, the extent to which crop production might be improved and how this would impact future water and land requirements remains poorly understood. We analyzed potential improvements in the production of these crops and quantified their future water and land requirements under different scenarios. Potential improvements were detected through percentile analysis in three remote sensing-derived performance indicators for each crop in the Nile Delta’s Zankalon region: (i) crop yield, (ii) crop water productivity, and (iii) transpiration fraction (transpiration to actual evapotranspiration, T/AET). We applied detected improvementsto construct plausible scenarios for Egypt’s water and land requirements to sustain domestic crop production until 2050. Our findings indicate limited potential to improve T/AET (< 4%). However, improvements of up to 27% for crop yields and up to 14% for water productivity are possible. To meet the production targets by 2050, national production must increase by 128, 78, 69, and 71% above the 2016–2020’s average for rice, maize, wheat, and berseem, respectively. Depending on the improvement levels in the developed scenarios, a total harvested land area between 5.3 and 6.4 million ha will be required by 2050, with 18% allocated to rice, 28% to maize, 36% to wheat, and 18% to berseem. Associated freshwater requirements will amount to 59–68 billion cubic meters, divided into 23% for rice, 34% for maize, 28% for wheat, and 15% for berseem. Interventions increasing yields and water productivity will benefit more the summer (rice and maize) than the winter crops (wheat and berseem). We discuss likely interventions for meeting these requirements and for sustaining the supply of these crops in Egypt.

Funder

Rheinische Friedrich-Wilhelms-Universität Bonn

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3