Integrating Optical Genome Mapping and Whole Genome Sequencing in Somatic Structural Variant Detection

Author:

Budurlean Laura1ORCID,Tukaramrao Diwakar Bastihalli2,Zhang Lijun3ORCID,Dovat Sinisa12,Broach James1ORCID

Affiliation:

1. Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA

2. Department of Pediatrics, Penn State Cancer Institute, Hershey, PA 17033, USA

3. Department of Population & Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106, USA

Abstract

Structural variants drive tumorigenesis by disrupting normal gene function through insertions, inversions, translocations, and copy number changes, including deletions and duplications. Detecting structural variants is crucial for revealing their roles in tumor development, clinical outcomes, and personalized therapy. Presently, most studies rely on short-read data from next-generation sequencing that aligns back to a reference genome to determine if and, if so, where a structural variant occurs. However, structural variant discovery by short-read sequencing is challenging, primarily because of the difficulty in mapping regions of repetitive sequences. Optical genome mapping (OGM) is a recent technology used for imaging and assembling long DNA strands to detect structural variations. To capture the structural variant landscape more thoroughly in the human genome, we developed an integrated pipeline that combines Bionano OGM and Illumina whole-genome sequencing and applied it to samples from 29 pediatric B-ALL patients. The addition of OGM allowed us to identify 511 deletions, 506 insertions, 93 duplications/gains, and 145 translocations that were otherwise missed in the short-read data. Moreover, we identified several novel gene fusions, the expression of which was confirmed by RNA sequencing. Our results highlight the benefit of integrating OGM and short-read detection methods to obtain a comprehensive analysis of genetic variation that can aid in clinical diagnosis, provide new therapeutic targets, and improve personalized medicine in cancers driven by structural variation.

Funder

NIH/NCI

Hyundai Hope on Wheels and Four Diamonds Childhood Cancer Foundation

Publisher

MDPI AG

Reference42 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3