Practical Considerations for Laser-Induced Graphene Pressure Sensors Used in Marine Applications

Author:

Van Volkenburg Tessa1,Ayoub Daniel1ORCID,Alemán Reyes Andrea2,Xia Zhiyong1,Hamilton Leslie1

Affiliation:

1. Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA

2. Department of Chemical Engineering, University of Puerto Rico at Mayaguez, Mayaguez 00681, Puerto Rico

Abstract

Small, low-power, and inexpensive marine depth sensors are of interest for a myriad of applications from maritime security to environmental monitoring. Recently, laser-induced graphene (LIG) piezoresistive pressure sensors have been proposed given their rapid fabrication and large dynamic range. In this work, the practicality of LIG integration into fieldable deep ocean (1 km) depth sensors in bulk is explored. Initially, a design of experiments (DOEs) approach evaluated laser engraver fabrication parameters such as line length, line width, laser speed, and laser power on resultant resistances of LIG traces. Next, uniaxial compression and thermal testing at relevant ocean pressures up to 10.3 MPa and temperatures between 0 and 25 °C evaluated the piezoresistive response of replicate sensors and determined the individual characterization of each, which is necessary. Additionally, bare LIG sensors showed larger resistance changes with temperature (ΔR ≈ 30 kΩ) than pressure (ΔR ≈ 1–15 kΩ), indicating that conformal coatings are required to both thermally insulate and electrically isolate traces from surrounding seawater. Sensors encapsulated with two dip-coated layers of 5 wt% polydimethylsiloxane (PDMS) silicone and submerged in water baths from 0 to 25 °C showed significant thermal dampening (ΔR ≈ 0.3 kΩ), indicating a path forward for the continued development of LIG/PDMS composite structures. This work presents both the promises and limitations of LIG piezoresistive depth sensors and recommends further research to validate this platform for global deployment.

Funder

Office of Naval Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference36 articles.

1. Reinforced Piezoresistive Pressure Sensor for Ocean Depth Measurements;Aravamudhan;Sens. Actuators A Phys.,2008

2. High-Pressure Sensor with High Sensitivity and High Accuracy for Full Ocean Depth Measurements;Li;IEEE Sens. J.,2022

3. Ocean Observation Technologies: A Review;Lin;Chin. J. Mech. Eng.,2020

4. Marine Mammals Exploring the Oceans Pole to Pole: A Review of the MEOP Consortium;Treasure;Oceanography,2017

5. Quality Control Methods for CTD Data Collected by Using Instrumented Marine Mammals: A Review and Case Study;Yoon;Ocean Polar Res.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3