Development of a Redox-Polymer-Based Electrochemical Glucose Biosensor Suitable for Integration in Microfluidic 3D Cell Culture Systems

Author:

Navarro-Nateras L.1,Diaz-Gonzalez Jancarlo1ORCID,Aguas-Chantes Diana1,Coria-Oriundo Lucy L.2,Battaglini Fernando2ORCID,Ventura-Gallegos José Luis3,Zentella-Dehesa Alejandro34,Oza Goldie1ORCID,Arriaga L. G.1,Casanova-Moreno Jannu R.1ORCID

Affiliation:

1. Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Pedro Escobedo 76703, Querétaro, Mexico

2. Instituto de Química Física de los Materiales, Medio Ambiente y Energía, CONICET—Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina

3. Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico

4. Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico

Abstract

The inclusion of online, in situ biosensors in microfluidic cell cultures is important to monitor and characterize a physiologically mimicking environment. This work presents the performance of second-generation electrochemical enzymatic biosensors to detect glucose in cell culture media. Glutaraldehyde and ethylene glycol diglycidyl ether (EGDGE) were tested as cross-linkers to immobilize glucose oxidase and an osmium-modified redox polymer on the surface of carbon electrodes. Tests employing screen printed electrodes showed adequate performance in a Roswell Park Memorial Institute (RPMI-1640) media spiked with fetal bovine serum (FBS). Comparable first-generation sensors were shown to be heavily affected by complex biological media. This difference is explained in terms of the respective charge transfer mechanisms. Under the tested conditions, electron hopping between Os redox centers was less vulnerable than H2O2 diffusion to biofouling by the substances present in the cell culture matrix. By employing pencil leads as electrodes, the incorporation of these electrodes in a polydimethylsiloxane (PDMS) microfluidic channel was achieved simply and at a low cost. Under flow conditions, electrodes fabricated using EGDGE presented the best performance with a limit of detection of 0.5 mM, a linear range up to 10 mM, and a sensitivity of 4.69 μA mM−1 cm−2.

Funder

CIDETEQ

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Reference67 articles.

1. Organ-on-a-chip microengineering for bio-mimicking disease models and revolutionizing drug discovery;Ahmed;Biosens. Bioelectron. X,2022

2. State of the art in integrated biosensors for organ-on-a-chip applications;Zhu;Biomed. Eng.,2021

3. Online and in situ analysis of organs-on-a-chip;Santbergen;TrAC Trends Anal. Chem.,2019

4. Real-time monitoring of metabolic function in liver-onchip microdevices tracks the dynamics of Mitochondrial dysfunction;Bavli;Proc. Natl. Acad. Sci. USA,2016

5. In-situ monitoring of glucose metabolism in cancer cell microenvironments based on hollow fiber structure;Ma;Biosens. Bioelectron.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3