A Label-Free and Antibody-Free Molecularly Imprinted Polymer-Based Impedimetric Sensor for NSCLC-Cells-Derived Exosomes Detection

Author:

Zhang Jingbo1ORCID,Chen Quancheng1,Gao Xuemin1,Lin Qian1,Suo Ziqin1,Wu Di1,Wu Xijie2,Chen Qing1ORCID

Affiliation:

1. School of Pharmaceutical Science, Xiamen University, 4221 Xiang’an South Road, Xiamen 361102, China

2. Department of Cardiac Surgery, Xiamen Cardiovascular Hospital, Xiamen University, 2999 Jinshan Road, Xiamen 361010, China

Abstract

In this study, a label-free and antibody-free impedimetric biosensor based on molecularly imprinting technology for exosomes derived from non-small-cell lung cancer (NSCLC) cells was established. Involved preparation parameters were systematically investigated. In this design, with template exosomes anchored on a glassy carbon electrode (GCE) by decorated cholesterol molecules, the subsequent electro-polymerization of APBA and elution procedure afforded a selective adsorption membrane for template A549 exosomes. The adsorption of exosomes caused a rise in the impedance of the sensor, so the concentration of template exosomes can be quantified by monitoring the impedance of GCEs. Each procedure in the establishment of the sensor was monitored with a corresponding method. Methodological verification showed great sensitivity and selectivity of this method with an LOD = 2.03 × 103 and an LOQ = 4.10 × 104 particles/mL. By introducing normal cells and other cancer cells derived exosomes as interference, high selectivity was proved. Accuracy and precision were measured, with an obtained average recovery ratio of 100.76% and a resulting RSD of 1.86%. Additionally, the sensors’ performance was retained at 4 °C for a week or after undergoing elution and re-adsorption cycles seven times. In summary, the sensor is competitive for clinical translational application and improving the prognosis and survival for NSCLC patients.

Funder

Xiamen Municipal Bureau of Science and Technology

Education Department of Fujian Province

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Molecularly Imprinted Polymers (MIPs);Sensory Polymers;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3