Low Overpotential Amperometric Sensor Using Yb2O3.CuO@rGO Nanocomposite for Sensitive Detection of Ascorbic Acid in Real Samples

Author:

Ahmed Jahir12ORCID,Faisal Mohd12,Algethami Jari12ORCID,Alsaiari Mabkhoot13,Alsareii Saeed14ORCID,Harraz Farid13

Affiliation:

1. Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran 11001, Saudi Arabia

2. Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Saudi Arabia

3. Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia

4. Department of Surgery, College of Medicine, Najran University, Najran 11001, Saudi Arabia

Abstract

The ultimate objective of this research work is to design a sensitive and selective electrochemical sensor for the efficient detection of ascorbic acid (AA), a vital antioxidant found in blood serum that may serve as a biomarker for oxidative stress. To achieve this, we utilized a novel Yb2O3.CuO@rGO nanocomposite (NC) as the active material to modify the glassy carbon working electrode (GCE). The structural properties and morphological characteristics of the Yb2O3.CuO@rGO NC were investigated using various techniques to ensure their suitability for the sensor. The resulting sensor electrode was able to detect a broad range of AA concentrations (0.5–1571 µM) in neutral phosphate buffer solution, with a high sensitivity of 0.4341 µAµM−1cm−2 and a reasonable detection limit of 0.062 µM. The sensor’s great sensitivity and selectivity allowed it to accurately determine the levels of AA in human blood serum and commercial vitamin C tablets. It demonstrated high levels of reproducibility, repeatability, and stability, making it a reliable and robust sensor for the measurement of AA at low overpotential. Overall, the Yb2O3.CuO@rGO/GCE sensor showed great potential in detecting AA from real samples.

Funder

Institutional Funding Committee at Najran University

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3