Author:
Woodward Brian D.,Evangelista Paul H.,Young Nicholas E.,Vorster Anthony G.,West Amanda M.,Carroll Sarah L.,Girma Rebecca K.,Hatcher Emma Zink,Anderson Ryan,Vahsen Megan L.,Vashisht Amandeep,Mayer Timothy,Carver Daniel,Jarnevich Catherine
Abstract
Here we present “CO-RIP”, a novel spatial dataset delineating riparian corridors and riparian vegetation along large streams and rivers in the United States (U.S.) portion of the Colorado River Basin. The consistent delineation of riparian areas across large areas using remote sensing has been a historically complicated process partially due to differing definitions in the scientific and management communities regarding what a “riparian corridor” or “riparian vegetation” represents. We use valley-bottoms to define the riparian corridor and establish a riparian vegetation definition interpretable from aerial imagery for efficient, consistent, and broad-scale mapping. Riparian vegetation presence and absence data were collected using a systematic, flexible image interpretation process applicable wherever high resolution imagery is available. We implemented a two-step approach using existing valley bottom delineation methods and random forests classification models that integrate Landsat spectral information to delineate riparian corridors and vegetation across the 12 ecoregions of the Colorado River Basin. Riparian vegetation model accuracy was generally strong (median kappa of 0.80), however it varied across ecoregions (kappa range of 0.42–0.90). We offer suggestions for improvement in our current image interpretation and modelling frameworks, particularly encouraging additional research in mapping riparian vegetation in moist coniferous forest and deep canyon environments. The CO-RIP dataset created through this research is publicly available and can be utilized in a wide range of ecological applications.
Subject
Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Geography, Planning and Development
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献