Russian olive distribution and invasion dynamics along the Powder River, Montana and Wyoming, USA

Author:

Courtney KarissaORCID,Buczek Catherine,Bywater-Reyes SharonORCID,Shahin Dahlia,Tian Amy,Andrews Carly,Franklin ScottORCID,Woodward BrianORCID,Cunningham Scott,Vorster Anthony G.ORCID

Abstract

AbstractThe invasive shrub, Russian olive (Elaeagnus augustifolia), is widely established within riparian areas across North America and eastern Europe. Limited information on its distribution and invasion dynamics in northern regions has hampered understanding and management efforts. Given this lack of spatial and ecological information we worked with local stakeholders and developed two main objectives: (1) map the distribution of Russian olive along the Powder River (Montana and Wyoming, United States) as of 2020 with field data and remote sensing; and (2) relate that distribution to environmental variables to understand its habitat suitability and community/invasion dynamics. Field data showed Russian olive has reached near equal canopy cover (18.3%) to native Plains cottonwood (Populus deltoides; 19.1%) and has a broader distribution. At the watershed scale, we modeled Russian olive distribution using field surveys, ocular sampling of aerial imagery, and spectral variables from Sentinel-2 MultiSpectral Instrument using a random forest model (RMSE = 15.42, R2 = 0.64). A statistical model linking the resulting Russian olive percent cover detection map to environmental variables for the entire watershed indicated Russian olive cover increased with flow accumulation and decreased with elevation, and was associated with poorer soil types. We attribute the success of Russian olive to its broad habitat suitability combined with changing hydrologic conditions favoring it over natives. The maps of Russian olive cover along the Powder River and its main tributaries in northern Wyoming and southern Montana revealed regions of the watershed with high and low cover, which can guide landscape-scale management prioritization. This study provides a repeatable Russian olive detection method due to the use of Sentinel-2 imagery that is available worldwide and provides insight into Russian olive’s ecological relationships and success with relevance for management across areas with similar environmental conditions.

Funder

Langley Research Center

U.S. Geological Survey

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3