Experimental and Modeling Analysis of Holey Graphene Electrodes for High-Power-Density Li-Ion Batteries

Author:

Huang Yu-RenORCID,Chen Cheng-Lung,Pu Nen-Wen,Wu Chia-Hung,Liu Yih-Ming,Chen Ying-Hsueh,Youh Meng-Jey,Ger Ming-DerORCID

Abstract

The performances of lithium-ion batteries (LIBs) using holey graphene (HGNS) as the anode material are compared with those using non-holey graphene (GNS). The effects of graphene holes on ion transport are analyzed with a combined experiment/modeling approach involving molecular dynamics (MD) simulations. The large aspect ratio of GNS leads to long transport paths for Li ions, and hence a poor rate capability. We demonstrate by both experiments and simulations that the holey structure can effectively improve the rate capability of LIBs by providing shortcuts for Li ion diffusion through the holes in fast charge/discharge processes. The HGNS anode exhibits a high specific capacity of 745 mAh/g at 0.1 A/g (after 80 cycles) and 141 mAh/g at a large current density of 10 A/g, which are higher than the capacity values of the GNS counterpart by 75% and 130%, respectively. MD simulations also reveal the difference in lithium ion transport between GNS and HGNS anodes. The calculations indicate that the HGNS system has a higher diffusion coefficient for lithium ions than the GNS system. In addition, it shows that the holey structure can improve the uniformity and quality of the solid electrolyte interphase (SEI) layer, which is important for Li ion conduction across this layer to access the electrode surface. Moreover, quantum chemistry (QC) computations show that ethylene carbonate (EC), a cyclic carbonate electrolyte with five-membered-ring molecules, has the lowest electron binding energy of 1.32 eV and is the most favorable for lithium-ion transport through the SEI layer. A holey structure facilitates uniform dispersion of EC on graphene sheets and thus enhances the Li ion transport kinetics.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3