Abstract
LiNi1−x−yMnxCoyO2 materials are a typical class of layered cathode materials with excellent electrochemical performance in lithium-ion batteries. Molecular dynamics simulations are performed for LiNi1−x−yMnxCoyO2 materials with different transition metal ratios. The Li/Ni exchange ratio, ratio of anti-site Ni2+ to total Ni2+, and diffusion coefficient of Li ions in these materials are calculated. The results show that the Li-ion diffusion coefficient strongly depends on the ratio of anti-site Ni2+ to total Ni2+ because their variation tendencies are similar. In addition, the local coordination structure of the Li/Ni anti-site is analyzed.
Funder
National Natural Science Foundation of China
the National Key R&D Program of China
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献