Design and Analysis of an Intelligent Toilet Wheelchair Based on Planar 2DOF Parallel Mechanism with Coupling Branch Chains

Author:

Shi Xiaohua,Lu HaoORCID,Chen Ziming

Abstract

Due to the fixed size of the structure or the possibility of only simple manual adjustment, the traditional toilet wheelchair cannot easily be adapted to the size of the user or the toilet. In this paper, a planar two-degree-of-freedom parallel mechanism with coupling branch chains is proposed to enable both seat height adjustment and body posture adjustment of a toilet chair, solving the problems of posture adaptability between the user and the machine, and height matching in the process of using the wheelchair-assisted toilet. The model of the parallel mechanism was designed after analyzing the general rules of posture transformation in the human body before and after the toilet process, and the dimensions of each linkage were then determined according to the constraint conditions. By analyzing the degree of freedom, kinematics, workspace, singularity and position of the center of gravity, the rationality of the design was ensured. The weighted average function was used to find the optimal fixed point of the horizontal moving slider, and the actual trajectory at the end of the single driving mode was close to the ideal trajectory. The experimental results show that the adjustable seat height range is 290~550 mm and the adjustable angle range is 0~90°, which can enable disabled people to use the toilet independently.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Outdoor recreation among wheeled mobility users: perceived barriers and facilitators

2. SmartWheels: Detecting urban features for wheelchair users’ navigation

3. Design of stair-climbing wheelchair using tri-wheel mechanism;Rao;Int. J. Mech. Prod. Eng. Res. Dev.,2018

4. Evaluation of the Biomechanical Parameters of Human-Wheelchair Systems during Ramp Climbing with the Use of a Manual Wheelchair with Anti-Rollback Devices

5. Deep Learning-Based Object Detection, Localisation and Tracking for Smart Wheelchair Healthcare Mobility;Lecrosnier;Public Health,2021

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3