Multi-Sensor Data Fusion for 3D Reconstruction of Complex Structures: A Case Study on a Real High Formwork Project

Author:

Zhao Linlin123,Zhang Huirong1,Mbachu Jasper4ORCID

Affiliation:

1. Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China

2. Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing 100124, China

3. Key Laboratory of Urban Security and Disaster Engineering of China Ministry of Education, Beijing University of Technology, Beijing 100124, China

4. Faculty of Society & Design, Bond University, Gold Coast, QLD 4226, Australia

Abstract

As the most comprehensive document types for the recording and display of real-world information regarding construction projects, 3D realistic models are capable of recording and displaying simultaneously textures and geometric shapes in the same 3D scene. However, at present, the documentation for much of construction infrastructure faces significant challenges. Based on TLS, GNSS/IMU, mature photogrammetry, a UAV platform, computer vision technologies, and AI algorithms, this study proposes a workflow for 3D modeling of complex structures with multiple-source data. A deep learning LoFTR network was used first for image matching, which can improve matching accuracy. Then, a NeuralRecon network was employed to generate a 3D point cloud with global consistency. GNSS information was used to reduce search space in image matching and produce an accurate transformation matrix between the image scene and the global reference system. In addition, to enhance the effectiveness and efficiency of the co-registration of the two-source point clouds, an RPM-net was used. The proposed workflow processed the 3D laser point cloud and UAV low-altitude multi-view image data to generate a complete, accurate, high-resolution, and detailed 3D model. Experimental validation on a real high formwork project was carried out, and the result indicates that the generated 3D model has satisfactory accuracy with a registration error value of 5 cm. Model comparison between the TLS, image-based, data fusion 1 (using the common method), and data fusion 2 (using the proposed method) models were conducted in terms of completeness, geometrical accuracy, texture appearance, and appeal to professionals. The results denote that the generated 3D model has similar accuracy to the TLS model yet also provides a complete model with a photorealistic appearance that most professionals chose as their favorite.

Funder

Beijing University of Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3