Thick Cloud Removal in Multi-Temporal Remote Sensing Images via Frequency Spectrum-Modulated Tensor Completion

Author:

Chen Zhihong123ORCID,Zhang Peng123,Zhang Yu123,Xu Xunpeng123,Ji Luyan123,Tang Hairong123ORCID

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Clouds often contaminate remote sensing images, which leads to missing land feature information and subsequent application degradation. Low-rank tensor completion has shown great potential in the reconstruction of multi-temporal remote sensing images. However, existing methods ignore different low-rank properties in the spatial and temporal dimensions, such that they cannot utilize spatial and temporal information adequately. In this paper, we propose a new frequency spectrum-modulated tensor completion method (FMTC). First, remote sensing images are rearranged as third-order spatial–temporal tensors for each band. Then, Fourier transform (FT) is introduced in the temporal dimension of the rearranged tensor to generate a spatial–frequential tensor. In view of the fact that land features represent low-frequency components and fickle clouds represent high-frequency components in the time domain, we chose adaptive weights for the completion of different low-rank spatial matrixes, according to the frequency spectrum. Then, Invert Fourier Transform (IFT) was implemented. Through this method, the joint low-rank spatial–temporal constraint was achieved. The simulated data experiments demonstrate that FMTC is applicable on different land-cover types and different missing sizes. With real data experiments, we have validated the effectiveness and stability of FMTC for time-series remote sensing image reconstruction. Compared with other algorithms, the performance of FMTC is better in quantitative and qualitative terms, especially when considering the spectral accuracy and temporal continuity.

Funder

the Second Tibetan Plateau Scientific Expedition and Research Program

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3