A Flexible Spatiotemporal Thick Cloud Removal Method with Low Requirements for Reference Images

Author:

Zhang Yu123,Ji Luyan12,Xu Xunpeng123,Zhang Peng12,Jiang Kang12,Tang Hairong123ORCID

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Key Laboratory of Technology in Geo-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Thick cloud and shadows have a significant impact on the availability of optical remote sensing data. Although various methods have been proposed to address this issue, they still have some limitations. First, most approaches rely on a single clear reference image as complementary information, which becomes challenging when the target image has large missing areas. Secondly, the existing methods that can utilize multiple reference images require the complementary data to have high temporal correlation, which is not suitable for situations where the difference between the reference image and the target image is large. To overcome these limitations, a flexible spatiotemporal deep learning framework based on generative adversarial networks is proposed for thick cloud removal, which allows for the use of three arbitrary temporal images as references. The framework incorporates a three-step encoder that can leverage the uncontaminated information from the target image to assimilate the reference images, enhancing the model’s ability to handle reference images with diverse temporal differences. A series of simulated and real experiments on Landsat 8 and Sentinel 2 data is performed to demonstrate the effectiveness of the proposed method. The proposed method is especially applicable to small/large-scale regions with reference images that are significantly different from the target image.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3