A Cloud Coverage Image Reconstruction Approach for Remote Sensing of Temperature and Vegetation in Amazon Rainforest

Author:

Bezerra Emili1ORCID,Mafalda Salomão1ORCID,Alvarez Ana Beatriz1ORCID,Uman-Flores Diego Armando2ORCID,Perez-Torres William Isaac2ORCID,Palomino-Quispe Facundo2ORCID

Affiliation:

1. PAVIC Laboratory, University of Acre (UFAC), Rio Branco 69915-900, Brazil

2. LIECAR Laboratory, Universidad Nacional de San Antonio Abad del Cusco (UNSAAC), Cusco 08003, Peru

Abstract

Remote sensing involves actions to obtain information about an area located on Earth. In the Amazon region, the presence of clouds is a common occurrence, and the visualization of important terrestrial information in the image, like vegetation and temperature, can be difficult. In order to estimate land surface temperature (LST) and the normalized difference vegetation index (NDVI) from satellite images with cloud coverage, the inpainting approach will be applied to remove clouds and restore the image of the removed region. This paper proposes the use of the neural network LaMa (large mask inpainting) and the scalable model named Big LaMa for the automatic reconstruction process in satellite images. Experiments are conducted on Landsat-8 satellite images of the Amazon rainforest in the state of Acre, Brazil. To evaluate the architecture’s accuracy, the RMSE (root mean squared error), SSIM (structural similarity index) and PSNR (peak signal-to-noise ratio) metrics were used. The LST and NDVI of the reconstructed image were calculated and compared qualitatively and quantitatively, using scatter plots and the chosen metrics, respectively. The experimental results show that the Big LaMa architecture performs more effectively and robustly in restoring images in terms of visual quality. And the LaMa network shows minimal superiority for the measured metrics when addressing medium marked areas. When comparing the results achieved in NDVI and LST of the reconstructed images with real cloud coverage, great visual results were obtained with Big LaMa.

Funder

PAVIC Laboratory, University of Acre, Brazil

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3