Assessing the Spatiotemporal Variations in the Hydrological Response of the Qin River Basin in Loess Plateau, China

Author:

Guo Peng12,Wang Yingjie3,Yan Yilin12,Wang Fei12ORCID,Lyu Jiqiang4ORCID,Ge Wenyan12ORCID,Chen Hao12,Jiao Juying12ORCID

Affiliation:

1. Institute of Soil and Water Conservation, Northwest A&F University, Xianyang 712100, China

2. Institute of Soil and Water Conservation, Chinese Academy of Sciences & Ministry of Water Resources, Xianyang 712100, China

3. College of Language and Culture, Northwest A&F University, Xianyang 712100, China

4. School of Water and Environment, Chang’an University, Xi’an 710064, China

Abstract

In recent decades, the hydrological processes on the Loess Plateau have undergone significant changes due to the combined effects of climate change and human activities. This study investigates the Qin River basin, the core area of the Loess Plateau. Between 1971 and 2000, the hydrometeorology of the flood season in the Qin basin on the Loess Plateau in China changed abruptly in 1982 and 1992. This study uses distributed hydrologic modeling and statistical analysis to distinguish the spatial and temporal impacts of climate change and human activities. The fastest dynamic changes in land use occurred in grassland and construction land, accounting for 0.36% and −0.1%, respectively, from 1982 to 1991. From 1992 to 2000, it was 0.29% and 0.3%, respectively. The increase in basin area where the Normalized Difference Vegetation Index increased was 95%. However, except for significant changes in runoff from 1981 to 1992, there were no significant changes in precipitation, runoff, and temperature during other flood seasons. During the two studied variation periods, from 1982 to 1991 and from 1992 to 2000, the contribution rate of climate change to flood season runoff (CClimate) decreased from 83.26% to 74.47%, while the contribution rate of human activity disturbance to flood season runoff (Chuman) increased from 16.74% to 25.53%. In terms of spatial distribution, from 1982 to 1991, areas with a Chuman > 50% were primarily concentrated in the upper reaches of the basin, while from 1992–2000, these areas shifted to the lower reaches. This study offers valuable insights for water resource planning and soil conservation measures in the Loess Plateau and similar arid regions worldwide, aiming to ensure water resource safety and sustainability in response to climate change and human interference.

Funder

International Partnership Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

National Natural Science Foundation of China Yellow River Water Science Research Joint Fund Project

Shaanxi Postdoctoral Science Foundation

General Financial Grant from the China Post-doctoral Science Foundation

Fundamental Research Funds for the Central Universities, CHD

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3