Remote Retrieval of Suspended Particulate Matter in Inland Waters: Image-Based or Physical Atmospheric Correction Models?

Author:

El Alem AnasORCID,Lhissou Rachid,Chokmani KaremORCID,Oubennaceur KhalidORCID

Abstract

The objective of this paper was to compare the limits of three image-based atmospheric correction models (top of the atmosphere (ToA), dark object subtraction (DOS), and cosine of the sun zenith angle (COST)), and three physical models (atmospheric correction for flat terrain (ATCOR), fast line-of-sight atmospheric analysis of spectral hypercubes (FLAASH)), and ACOLITE) for retrieving suspended particulate matter (SPM) concentrations in inland water bodies using Landsat imagery. For SPM concentration estimates, all possible combinations of 2-band normalized ratios (2bNR) were computed, and a stepwise regression was applied. The correlation analysis allowed highlighting that the red/blue 2bNR was the best spectral index to retrieve SPM concentrations in the case of image-based models, while the red/green 2bNR was the best in the case of physical models. Contrary to expectations, image-based atmospheric models outperformed the accuracy of physical models. The cross-validation results underlined the good performance of the DOS and COST models, with R2 > 0.83, NASH-criterion (Nash) > 0.83, bias = −0.01 mg/L, and RMSE < 0.27 mg/L. This outperformance was confirmed using blind test validation data, with an R2 > 0.86 and Nash > 0.58 for the DOS and COST models. The challenges and limitations involved in the remote monitoring of SPM spatial distribution in turbid productive waters using satellite data are discussed at the end of the paper.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3