Impact of Atmospheric Correction Methods Parametrization on Soil Organic Carbon Estimation Based on Hyperion Hyperspectral Data

Author:

Mruthyunjaya PrajwalORCID,Shetty Amba,Umesh Pruthviraj,Gomez CécileORCID

Abstract

Visible Near infrared and Shortwave Infrared (VNIR/SWIR, 400–2500 nm) remote sensing data is becoming a tool for topsoil properties mapping, bringing spatial information for environmental modeling and land use management. These topsoil properties estimates are based on regression models, linking a key topsoil property to VNIR/SWIR reflectance data. Therefore, the regression model’s performances depend on the quality of both topsoil property analysis (measured on laboratory over-ground soil samples) and Bottom-of-Atmosphere (BOA) VNIR/SWIR reflectance which are retrieved from Top-Of-Atmosphere radiance using atmospheric correction (AC) methods. This paper examines the sensitivity of soil organic carbon (SOC) estimation to BOA images depending on two parameters used in AC methods: aerosol optical depth (AOD) in the FLAASH (Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes) method and water vapor (WV) in the ATCOR (ATmospheric CORrection) method. This work was based on Earth Observing-1 Hyperion Hyperspectral data acquired over a cultivated area in Australia in 2006. Hyperion radiance data were converted to BOA reflectance using seven values of AOD (from 0.2 to 1.4) and six values of WV (from 0.4 to 5 cm), in FLAASH and ATCOR, respectively. Then a Partial Least Squares regression (PLSR) model was built from each Hyperion BOA data to estimate SOC over bare soil pixels. This study demonstrated that the PLSR models were insensitive to the AOD variation used in the FLAASH method, with R2cv and RMSEcv of 0.79 and 0.4%, respectively. The PLSR models were slightly sensitive to the WV variation used in the ATCOR method, with R2cv ranging from 0.72 to 0.79 and RMSEcv ranging from 0.41 to 0.47. Regardless of the AOD values, the PLSR model based on the best parametrization of the ATCOR model provided similar SOC prediction accuracy to PLSR models using the FLAASH method. Variation in AOD using the FLAASH method did not impact the identification of bare soil pixels coverage which corresponded to 82.35% of the study area, while a variation in WV using the ATCOR method provided a variation of bare soil pixels coverage from 75.04 to 84.04%. Therefore, this work recommends (1) the use of the FLAASH AC method to provide BOA reflectance values from Earth Observing-1 Hyperion Hyperspectral data before SOC mapping or (2) a careful selection of the WV parameter when using ATCOR.

Funder

Programme National de Télédétection Spatiale

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3