Impact of Nonlinear Thermal Radiation on MHD Nanofluid Thin Film Flow over a Horizontally Rotating Disk

Author:

Shah Zahir,Dawar Abdullah,Kumam PoomORCID,Khan Waris,Islam Saeed

Abstract

Nanoscience can be stated as a superlative way of changing the properties of a working fluid. Heat transmission features during the flow of nanofluids are an imperative rule from the industrial and technological point of view. This article presents a thin film flow of viscous nanofluids over a horizontal rotating disk. The impact of non-linear thermal radiation and a uniform magnetic field is emphasized in this work. The governing equations were transformed and solved by the homotopy analysis method and the ND-Solve technique. Both analytical and numerical results are compared graphically and numerically, and excellent agreement was obtained. Skin friction and the Nusselt number were calculated numerically. It is concluded that the thin film thickness of nanofluids reduces with enhanced values of the magnetic parameter. In addition, the nanofluid temperature was augmented with increasing values of the thermal radiation parameter. The impact of emerging parameters on velocities and temperature profiles were obtainable through graphs and were deliberated on in detail.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3