MHD Flow and Heat Transfer of Water-Based Nanofluid Passing a Permeable Exponentially Shrinking Sheet with Thermal Radiation

Author:

Murtaza M. G.ORCID,Begum Jahanara,Tzirtzilkakis E.E.ORCID,Ferdows M.

Abstract

The key objective of the present study is to elaborate the concept of boundary layer flow and heat transfer of magnetohydrodynamics namely Cu-water nanofluid flow towards an exponentially shrinking sheet with aid of mathematical modeling and computation. The present mathematical model is investigated under the influence of thermal radiation and suction. Using exponential form of similarity variables, the system of partial differential equations (PDEs) are converted in to a set of ordinary differential equations (ODEs). The resulting nonlinear ODEs are computationally solved by using a two-point boundary value problem numerical technique, which constitutes with common finite difference method. The influence of physical parameters such as magnetic field parameter, Eckert number, suction parameter, radiation parameter are described in details with the help of graphical demonstration of velocity and temperature distributions, coefficient of skin fiction and rate of heat transfer. Computational results reveal that after suspension of nanoparticles into base fluid as water fluid temperature raised significantly compare to that of pure fluid. It is also observed that for rising values of magnetic field parameter, thermal radiation, particles volume fraction fluid temperature distribution significantly improved; whereas opposite phenomena is true for suction parameter and Prandtl number. The rate of heat transfer accelerated with Eckert number, Prandtl number, while coefficient of skin friction boost with thermal radiation parameter. For verifying purposes, a comparison has been shown between present results and the computational results of previous studies and found a very close agreement.

Publisher

Universal Wiser Publisher Pte. Ltd

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3