Analysis of a Supercapacitor/Battery Hybrid Power System for a Bulk Carrier

Author:

Kim Kyunghwa,An Juwan,Park Kido,Roh Gilltae,Chun Kangwoo

Abstract

Concerns about harmful exhaust emissions from ships have been an issue. Specifically, the emissions at ports are the most serious. This paper introduces a hybrid power system that combines conventional diesel generators with two different energy storage systems (ESSs) (lithium-ion batteries (LIB) and supercapacitors (SC)) focused on port operations of ships. To verify the proposed system, a bulk carrier with four deck cranes is selected as a target ship, and each size (capacity) of LIB and SC is determined based on assumed power demands. The determined sizes are proven to be sufficient for a target ship through simulation results. Lastly, the proposed system is compared to a conventional one in terms of the environmental and economic aspects. The results show that the proposed system can reduce emissions (CO2, SOX, and NOx) substantially and has a short payback period, particularly for ships that have a long cargo handling time or visit many ports with a short-term sailing time. Therefore, the proposed system could be an eco-friendly and economical solution for bulk carriers for emission problems at ports.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference59 articles.

1. Beyond Road Vehicles: Survey of Zero-Emission Technology Options across the Transport Sector;Hall,2018

2. A Study on Demand Estimation and Implementation for AMP (Alternative Maritime Power) Installation,2017

3. Health and climate impacts of ocean-going vessels in East Asia

4. Optimal sizing of hybrid PV/diesel/battery in ship power system

5. Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3