Analysis of the Energy Efficiency of a Hybrid Energy Storage System for an Electric Vehicle

Author:

Mariasiu Florin1ORCID,Kelemen Edmond A.2

Affiliation:

1. Automotive Engineering and Transport Department, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania

2. TECOSIM Engineering Srl Cluj-Napoca, 400145 Cluj-Napoca, Romania

Abstract

The large-scale introduction of electric vehicles into traffic has appeared as an immediate necessity to reduce the pollution caused by the transport sector. The major problem of replacing propulsion systems based on internal combustion engines with electric ones is the energy storage capacity of batteries, which defines the autonomy of the electric vehicle. Furthermore, considering the high cost of the battery, it is necessary to consider the implementation of command-and-control systems that extend the life of a battery for as long as possible. The topic covered in this article refers to the analysis by modeling and simulation of the efficiency of a hybrid energy storage system (battery–supercapacitor) adapted for an electric vehicle (e-Golf). Based on the simulations carried out, considering that the operating mode corresponds to the WLTP test cycle, the major conclusion was reached that the use of such a system leads to a decrease in energy consumption by 2.95% per 100 km. Simulations of the model were also carried out to obtain the variation in electricity consumption and vehicle autonomy depending on the number of passengers. Electricity consumption if the vehicle is equipped with a hybrid energy storage system increases by 0.67% on average for each passenger (of 75 kg) added and by 0.73% on average if the vehicle is not equipped with supercapacitors. Moreover, the use of the supercapacitor’s properties leads to the reduction in the peaks in energy taken/given by the battery with a direct effect on extending its life.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3