Effects of Temperature and Pressure on Corrosion Behavior of HVOF-Sprayed Fe-Based Amorphous Coating on the Mg-RE Alloy for Dissolvable Plugging Tools

Author:

Sun Yijiao1,Li Hongxiang1ORCID,Yang Jun23,Zhang Jishan1

Affiliation:

1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China

2. National Engineering Laboratory for Exploration and Development of Low-Permeability Oil & Gas Fields, Xi’an 710021, China

3. Changqing Downhole Technology Company, Chuanqing Drilling Engineering Co., Ltd., Xi’an 710021, China

Abstract

To retard the degradation of the magnesium alloys for dissolvable ball seats, Fe-based amorphous coatings were deposited on dissolvable Mg-RE alloy substrates using high velocity oxygen-fuel spraying technology. The results show that the Fe-based amorphous coatings possess low porosity (0.82%) and high amorphous contents (91.4%) and their corrosion resistance decreases with the increase of temperature or pressure. However, with the help of Fe-based amorphous coatings, the degradation time of dissolvable Mg-RE alloy has been significantly prolonged. In particular, the service life of coated Mg-RE alloy exceeds 360 h at temperatures below 50 °C and reaches 87 h at 120 °C and 80 atm. Under high temperature and high pressure, the compactness of passive films decreases and the chemical activities of ions and metal elements increase, leading to the degradation of corrosion resistance of Fe-based amorphous coatings. In long-term corrosion, the crystallized splats are prone to corrosion because of the multiphase structures. The corroded crystallized splats are connected to the inevitable pores by the corroded intersplat regions, resulting in the formation of corrosion channels and the corrosion failure of coatings. This study provides a useful guidance for the corrosion protection of dissolvable plugging tools made of magnesium alloys.

Funder

National Natural Science Foundation of China

Key Scientific Research Project in Shanxi Province

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3