Affiliation:
1. College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
2. State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
Abstract
Flaxseed contains huge quantities of anti-nutritional factors (ANFs), which reduce the performance of livestock. Three different protease and multi-carbohydrase enzymes were included in wheat-flaxseed diets (WFD) and corn-flaxseed diets (CFD) to compare their effects on performance, egg n-3 deposition, and fatty acid transporter genes in laying hens. A total of 540, twenty-week-old, Nongda-3 laying hens (DW brown × Hy-line white) were randomly assigned to six dietary groups, including 10% WFD or 10% CFD plus (i) supplemental enzyme A (alkaline protease 40,000 and neutral protease 10,000 (U/g)), (ii) enzyme B (alkaline protease 40,000, neutral protease 10,000, and cellulase 4000 (U/g)), or iii) enzyme C (neutral protease 10,000, xylanase 35,000, β-mannanase 1500, β-glucanase 2000, cellulose 500, amylase 100, and pectinase 10,000 (U/g)). An interaction (p < 0.05) was found for egg mass, hen day of egg production, and feed conversion ratio on the 9–10th week of the experiment. The WFD with enzyme B was associated with the highest egg weight in the 9–10th week. The deposition of total n-3 was superior with WFD (468.22 mg/egg) compared to CFD (397.90 mg/egg), while addition of enzyme C (464.90 mg/egg) resulted in the deposition of more total n-3 compared to enzymes A and B (411.89 and 422.42 mg/egg). The WFD and enzyme C significantly (p < 0.001) enhanced docosahexaenoic acid (DHA) and reduced the n-6:n-3 ratio in egg yolk compared to the CFD. The hepatic mRNA expression of liver fatty acid binding protein (L-FABP) (p = 0.006), fatty acid desaturase 1 (FADS-1) (p < 0.001), elongase-2 (ELOV-2) (p < 0.001), fatty acid transport protein-1 (FATP1) (p < 0.001), and the intestinal mRNA expression of FATP and FABP genes were increased with WFD compared to CFD. In conclusion, WFD with enzyme C is favorable for optimal performance, results in the deposition of more n-3 and DHA, and increases the expression of fatty acid transporter genes, which helps in n-3 transport.
Funder
Beijing Technology Program
Subject
General Veterinary,Animal Science and Zoology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献