Affiliation:
1. Hubei Provincial Key Laboratory for Geographical Process Analysis and Simulation, Central China Normal University, Wuhan 430079, China
2. College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
3. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China
Abstract
Fractional vegetation cover (FVC) has a significant role in indicating changes in ecosystems and is useful for simulating growth processes and modeling land surfaces. The fine-resolution FVC products represent detailed vegetation cover information within fine grids. However, the long revisit cycle of satellites with fine-resolution sensors and cloud contamination has resulted in poor spatial and temporal continuity. In this study, we propose to derive a spatially and temporally continuous FVC dataset by comparing multiple methods, including the data-fusion method (STARFM), curve-fitting reconstruction (S-G filtering), and deep learning prediction (Bi-LSTM). By combining Landsat and Sentinel-2 data, the integrated FVC was used to construct the initial input of fine-resolution FVC with gaps. The results showed that the FVC of gaps were estimated and time-series FVC was reconstructed. The Bi-LSTM method was the most effective and achieved the highest accuracy (R2 = 0.857), followed by the data-fusion method (R2 = 0.709) and curve-fitting method (R2 = 0.705), and the optimal time step was 3. The inclusion of relevant variables in the Bi-LSTM model, including LAI, albedo, and FAPAR derived from coarse-resolution products, further reduced the RMSE from 5.022 to 2.797. By applying the optimized Bi-LSTM model to Hubei Province, a time series 30 m FVC dataset was generated, characterized by a spatial and temporal continuity. In terms of the major vegetation types in Hubei (e.g., evergreen and deciduous forests, grass, and cropland), the seasonal trends as well as the spatial details were captured by the reconstructed 30 m FVC. It was concluded that the proposed method was applicable to reconstruct the time-series FVC over a large spatial scale, and the produced fine-resolution dataset can support the data needed by many Earth system science studies.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Natural Science Foundation of Hubei
Subject
General Earth and Planetary Sciences
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献