A Soft Computing-Based Analysis of Cutting Rate and Recast Layer Thickness for AZ31 Alloy on WEDM Using RSM-MOPSO

Author:

Goyal Kapil K.ORCID,Sharma Neeraj,Dev Gupta RahulORCID,Singh Gurpreet,Rani Deepika,Banga Harish KumarORCID,Kumar RamanORCID,Pimenov Danil YurievichORCID,Giasin KhaledORCID

Abstract

In the present research, the AZ31 alloy is machined by wire-cut electric discharge machining (WEDM). The experiments were designed according to the Box-Behnken design (BBD) of response surface methodology (RSM). The input process variables, namely servo feed (SF), pulse on-time (Ton), servo voltage (SV), and pulse off-time (Toff), were planned by BBD, and experiments were performed to investigate the cutting rate (CR) and recast layer thickness (RCL). The analysis of variance (ANOVA) was performed to determine the influence of machining variables on response characteristics. The empirical models developed for CR and RCL were solved using Multi-Objective Particle Swarm Optimization (MOPSO). Pareto optimal front is used for the collective optimization of CR and RCL. The optimal solution suggested by the hybrid approach of RSM-MOPSO is further verified using a confirmation test on the random setting indicated by the hybrid algorithm. It is found that the minimum RCL (6.34 µm) is obtained at SF: 1700; SV: 51 V; Toff: 10.5 µs; and Ton: 0.5 µs. However, maximum CR (3.18 m/min) is predicted at SF: 1900; SV: 40 V; Toff: 7 µs; and Ton: 0.9 µs. The error percentage of ±5.3% between the experimental results and predicted solutions confirms the suitability of the proposed hybrid approach for WEDM of AZ31.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3