Experimental examination on electrochemical micro-machining of Mg–Li–Sr biomedical alloy: Application of ANOVA, Deng’s similarity, and ANFIS for effective modeling optimization

Author:

Kavimani V.12ORCID,Gopal P. M.12ORCID,Sivamaran V.3,Algburi Sameer4ORCID,Barik Debabrata1ORCID,Paramasivam Prabhu56ORCID,Alsabhan Abdullah H.7,Alam Shamshad7ORCID

Affiliation:

1. Department of Mechanical Engineering, Karpagam Academy of Higher Education 1 , Coimbatore 641021, India

2. Centre for Material Science, Karpagam Academy of Higher Education 2 , Coimbatore 641021, India

3. Pharmaceutical Manufacturing Technology Centre (PMTC), Bernal Institute, University of Limerick 3 , Limerick, Ireland

4. Al-Kitab University 4 , Kirkuk 36015, Iraq

5. 5 Centre of Research Impact and Outcome, Chitkara University, Rajpura- 140417, Punjab, India

6. Department of Mechanical Engineering, Mattu University 6 , Mettu 318, Ethiopia

7. Department of Civil Engineering, College of Engineering, King Saud University 7 , Riyadh 11421, Saudi Arabia

Abstract

In this work, a newly discovered biomedical grade Magnesium–Lithium–Strontium (Mg–Li–Sr) alloy is machined using electrochemical machining technology. Two main output constraints employed on the research project to evaluate machinability are surface roughness (Ra) and material removal rate (MRR). Changing feed rate (FR), current, electrolyte concentration (EC), and voltage is required in order to carry out experimental experiments. The trials were designed using the Taguchi method. The ANOVA findings show that current is the most significant factor, after voltage as the most significant input parameter in regulating Ra and MRR. The ideal parameter configuration for the CRITIC-linked Deng’s similarity approach method was 5 V, 1 A of current, 0.4 mm/min of FR, and 20 g/l of EC. The final product was a 0.0323 mm/min MRR and a 2.61 μm surface roughness. Furthermore, the response variables are anticipated using the adaptive neuro-fuzzy Inference System, which finally results in predictions that are very similar to the experimental results.

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3