Ionospheric Peak Parameters Retrieved from FY-3C Radio Occultation: A Statistical Comparison with Measurements from COSMIC RO and Digisondes Over the Globe

Author:

Wang Han,Luo JiaORCID,Xu XiaohuaORCID

Abstract

In this study, two ionospheric peak parameters (ICPs), NmF2 and hmF2, derived from the global navigation satellite system (GNSS) radio occultation (RO) ionospheric electron density profiles (EDPs) obtained by Feng-Yun 3C (FY-3C) mission are compared with those derived from the observations of the Constellation Observing System for the Meteorology, Ionosphere, and Climate (COSMIC) mission and the measurements from 24 digisonde stations distributed around the world during the year from 2014 to 2017. The FY-3C derived ICPs and the COSMIC-derived ICPs are provided by the National Satellite Meteorological Centre (NSMC) and the COSMIC Data Analysis and Archive Center (CDAAC), respectively. The correlation and bias analyses are carried out in the comparison under the collocation criterion with the time interval of 1 h and the space interval of 3° in latitude and 5° in longitude. When comparing the ICPs derived from the two RO missions, the difference in the azimuth of occultation planes (DAOPs) between the matched pairs is limited to be within 20°. The comparison results are analyzed for different solar activity periods, and solar elevation angle (SEA) is taken for the first time as a factor that represents the comprehensive impacts of latitude zones, seasons, and local time of the observations. The results are shown as follows: (1) Both the COSMIC RO-derived and the digisonde-observed ICPs are in good agreement with the FY-3C RO-derived ones. The correlation coefficient (CC) between the NmF2 and hmF2 derived by COSMIC RO and FY-3C RO is 0.965 and 0.916, respectively, while the correlation coefficient between the NmF2 and hmF2 derived by digisonde and FY-3C RO is 0.924 and 0.832, respectively. The quality of FY-3C RO-derived ICPs are reliable enough for further applications. (2) The CC of NmF2 is, in general, higher than that of hmF2 when comparing FY-3C RO with other observations, and the overall MAB and MRB of FY-3C RO-derived ICPs during the higher solar activity period are higher than the ones during the lower solar activity period. The difference between the two RO missions is much smaller than that one between FY-3C RO and digisonde. (3) For a certain solar activity period, the standard deviations of the absolute bias (SDAB) and the standard deviations of the relative bias (SDRB) of FY-3C RO-derived ICPs compared with digisonde-derived ones generally increases with the increase of SEA, while the SDAB and SDRB of FY-3C RO-derived ICPs both get the minimum values for the AOP interval near to 90°.

Funder

National Natural Science Foundation of China

National Basic Research Program of China (973 Program)

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3