Abstract
This paper demonstrates the feasibility of detection and localization of multiple stationary human targets based on cross-correlation of the dual-station stepped-frequency continuous-wave (SFCW) radars. Firstly, a cross-correlation operation is performed on the preprocessed pulse signals of two SFCW radars at different locations to obtain the correlation coefficient matrix. Then, the constant false alarm rate (CFAR) detection is applied to extract the ranges between each target and the two radars, respectively, from the correlation matrix. Finally, the locations of human targets is calculated with the triangulation localization algorithm. This cross-correlation operation mainly brings about two advantages. On the one hand, the cross-correlation explores the correlation feature of target respiratory signals, which can effectively detect all targets with different signal intensities, avoiding the missed detection of weak targets. On the other hand, the pairing of two ranges between each target and two radars is implemented simultaneously with the cross-correlation. Experimental results verify the effectiveness of this algorithm.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献