Fiber Bragg Gratings Sensors for Aircraft Wing Shape Measurement: Recent Applications and Technical Analysis

Author:

Ma Zhen,Chen Xiyuan

Abstract

The safety monitoring and tracking of aircraft is becoming more and more important. Under aerodynamic loading, the aircraft wing will produce large bending and torsional deformation, which seriously affects the safety of aircraft. The variation of load on the aircraft wing directly affects the ground observation performance of the aircraft baseline. To compensate for baseline deformations caused by wing deformations, it is necessary to accurately obtain the deformation of the wing shape. The traditional aircraft wing shape measurement methods cannot meet the requirements of small size, light weight, low cost, anti-electromagnetic interference, and adapting to complex environment at the same time, the fiber optic sensing technology for aircraft wing shape measurement has been gradually proved to be a real time and online dynamic measurement method with many excellent characteristics. The principle technical characteristics and bonding technology of fiber Bragg grating sensors (FBGs) are reviewed in this paper. The advantages and disadvantages of other measurement methods are compared and analyzed and the application status of FBG sensing technology for aircraft wing shape measurement is emphatically analyzed. Finally, comprehensive suggestions for improving the accuracy of aircraft wing shape measurement based on FBG sensing technology is put forward.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference96 articles.

1. Military Airspacehttps://www.militaryaerospace.com/articles/2015/04/ av8b-airplane-blog.html

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3