A Robust Neutrosophic Modeling and Optimization Approach for Integrated Energy-Food-Water Security Nexus Management under Uncertainty

Author:

Ahmad FirozORCID,Ahmad ShafiqORCID,Zaindin Mazen,Adhami Ahmad Yusuf

Abstract

Natural resources are a boon for human beings, and their conservation for future uses is indispensable. Most importantly, energy-food-water security (EFWS) nexus management is the utmost need of our time. An effective managerial policy for the current distribution and conservation to meet future demand is necessary and challenging. Thus, this paper investigates an interconnected and dynamic EFWS nexus optimization model by considering the socio-economic and environmental objectives with the optimal energy supply, electricity conversion, food production, water resources allocation, and CO2 emissions control in the multi-period time horizons. Due to real-life complexity, various parameters are taken as intuitionistic fuzzy numbers. A novel method called interactive neutrosophic programming approach (INPA) is suggested to solve the EFWS nexus model. To verify and validate the proposed EFWS model, a synthetic computational study is performed. The obtained solution results are compared with other optimization approaches, and the outcomes are also evaluated with significant practical implications. The study reveals that the food production processes require more water resources than electricity production, although recycled water has not been used for food production purposes. The use of a coal-fired plant is not a prominent electricity conversion source. However, natural gas power plants’ service is also optimally executed with a marginal rate of production. Finally, conclusions and future research are addressed. This current study emphasizes how the proposed EFWS nexus model would be reliable and beneficial in real-world applications and help policy-makers identify, modify, and implement the optimal EFWS nexus policy and strategies for the future conservation of these resources.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3