Multi-objective optimization model for uncertain crop production under neutrosophic fuzzy environment: A case study

Author:

Kousar Sajida1,Sangi Maryam Nazir1,Kausar Nasreen2,Pamucar Dragan3,Ozbilge Ebru4,Cagin Tonguc4

Affiliation:

1. Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan

2. Department of Mathematics, Faculty of Arts and Sciences, Yildiz Technical University, Istanbul, Turkey

3. Faculty of Organizational Sciences, University of Belgrade, Belgrade, Serbia

4. American University of the Middle East, Department of Mathematics and Statistics, Egaila, Kuwait

Abstract

<abstract> <p>In real world uncertainty exist in almost every problem. Decision-makers are often unable to describe the situation accurately or predict the outcome of potential solutions due to uncertainty. To resolve these complicated situations, which include uncertainty, we use expert descriptive knowledge which can be expressed as fuzzy data. Pakistan, a country with a key geographic and strategic position in South Asia, relies heavily on irrigation for its economy, which involves careful consideration of the limits. A variety of factors can affect yield, including the weather and water availability. Crop productivity from reservoirs and other sources is affected by climate change. The project aims to optimize Kharif and Rabbi crop output in canal-irrigated areas. The optimization model is designed to maximize net profit and crop output during cropping seasons. Canal-connected farmed areas are variables in the crop planning model. Seasonal crop area, crop cultivated area, crop water requirement, canal capacity, reservoir evaporation, minimum and maximum storage, and overflow limits affect the two goals. The uncertainties associated with the entire production planning are incorporated by considering suitable membership functions and solved using the Multi-Objective Neutrosophic Fuzzy Linear Programming Model (MONFLP). For the validity and effectiveness of the technique, the model is tested for the wheat and rice production in Pakistan. The study puts forth the advantages of neutrosophic fuzzy algorithm which has been proposed, and the analyses derived can be stated to deal with yield uncertainty in the neutrosophic environments more effectively by considering the parameters which are prone to abrupt changes characterized by unpredictability.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3