Mesoscopic Mechanical Properties of Aggregate Structure in Asphalt Mixtures and Gradation Optimization

Author:

Chen Jingchun1,Wang Jian1,Li Min1,Zhao Zedong2,Ren Jiaolong1

Affiliation:

1. School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China

2. School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China

Abstract

Particle media are widely used in engineering and greatly influence the performance of engineering materials. Asphalt mixtures are multi-phase composite materials, of which coarse aggregates account for more than 60%. These coarse aggregates form a stable structure to transfer and disperse traffic loads. Therefore, knowing how to adjust the structural composition of coarse aggregates to optimize their performance is the key to optimize the performance of asphalt mixtures. In this study, the effects of different roughness and different sizes on the interlocking force and contact force of coarse aggregates were investigated through means of simulation (DEM), and then the formation-evolution mechanism of the coarse aggregate structure and the role of different sizes of aggregates in the coarse aggregate structure were analyzed. Subsequently, the optimal ratio of coarse aggregates was explored through indoor tests, and finally, the gradation of asphalt mixture based on the optimization of fine structure was formed and verified through indoor tests. The results showed that the major model can effectively reveal the role of different types of aggregates in the fine structure and the relationship between the strength of contact forces between them and clarify that the strength of the fine structure increases with the increase in aggregate roughness. Hence, the coarse aggregate structure can be regarded as a contact force transmission system composed of some strong and sub-strong contact forces. Their formation-evolution mechanism can be regarded as a process of the formation of strong and sub-strong contact forces and the transformation from sub-strong contact force to strong contact force. Moreover, the dynamic stability of the optimized graded asphalt mixture was increased by 30%, and the fracture toughness was increased by 26%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3