Evaluating the aggregate structure in hot-mix asphalt using three-dimensional computer modeling and particle packing simulations

Author:

Shashidhar Naga,Gopalakrishnan Kasthurirangan

Abstract

In a hot-mix asphalt (HMA) pavement, the aggregate structure serves as a backbone and is primarily responsible for resisting pavement distresses. A sound aggregate structure implies optimal packing of aggregates providing both particle–particle contact and sufficient void space to fill in asphalt. In this paper, three-dimensional particle packing concepts are applied to the study of aggregate structure in HMA. A sequential deposition packing algorithm was used for packing typical aggregate gradations. The packing fraction and the distribution of particle–particle contacts in the simulated compact were studied. The packing simulation gave satisfactory results when aggregates above a certain minimum size were considered. Regression models were established to estimate the coordination number of any size aggregate in the compact. Such studies, in conjunction with the recent advances in X-ray computed tomography imaging techniques and discrete element modeling (DEM) simulations, have tremendous potential to help develop a deeper understanding of the HMA aggregate structure, develop and optimize the various parameters that describe the aggregate structure, and relate these parameters to the performance of pavements in a scientific way.Key words: packing, aggregate structure, computer simulation, aggregate–aggregate contact, pavement performance.

Publisher

Canadian Science Publishing

Subject

General Environmental Science,Civil and Structural Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3