Affiliation:
1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
2. Ningbo Institute of Technology, Beihang University, Ningbo 315832, China
Abstract
Currently, artificial meniscus prostheses are mostly homogenous, low strength, and difficult to mimic the distribution of internal fibers in the native meniscus. To promote the overall mechanical performance of meniscus prostheses, this paper designed a new artificial braided meniscus model and conducted finite element analysis. Firstly, we designed the spatial fiber interweaving structure of meniscus model to mimic the internal fiber distribution of the native meniscus. Secondly, we provided the detailed braiding steps and forming process principles based on the weaving structure. Thirdly, we adopted the models of the fiber-embedded matrix and multi-scale methods separately for finite element analysis to achieve the reliable elastic properties. Meanwhile, we compared the results for two models, which are basically consistent, and verified the accuracy of analysis. Finally, we conducted the comparative simulation analysis of the meniscus model and the pure matrix meniscus model based on the solved elastic constants through Abaqus, which indicated a 60% increase in strength.
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献