Environmental Effects on Normalized Gross Primary Productivity in Beech and Norway Spruce Forests

Author:

Mensah CalebORCID,Šigut LadislavORCID,Fischer MilanORCID,Foltýnová Lenka,Jocher GeorgORCID,Urban OtmarORCID,Wemegah Cosmos Senyo,Nyantakyi Emmanuel K.ORCID,Chawla Shilpi,Pavelka MarianORCID,Marek Michal V.

Abstract

The strong effects of climate change are expected to negatively impact the long-term resilience and function of forest ecosystems, which could lead to changes in forest carbon balance and productivity. However, these forest responses may vary with local conditions and forest types. Accordingly, this study was carried out to determine gross primary productivity (GPP) sensitivity to changes in environmental parameters. Central European beech (at Štítná) and spruce species (at Bílý Kr̆íz̆ and Rájec), growing under contrasting climatic conditions, were studied. The comparative analyses of GPP were based on a five-year-long dataset of eddy covariance fluxes during the main growing season (2012–2016). Results of forest GPP responses with changes in environmental factors from a traditional Stepwise multiple linear regression model (SMLR) were used and compared with Random forest (RF) analyses. To demonstrate how actual GPP trends compare to potential GPP (GPPpot) courses expected under near-optimal environmental conditions, we computed normalized GPP (GPPnorm) with values between 0 and 1 as the ratio of the estimated daily sum of GPP to GPPpot. The study confirmed the well-known effect of total intensity of the photosynthetically active radiation and its diffuse fraction on GPPnorm across all the forest types. However, the study also showed the secondary effects of other environmental variables on forest productivity depending on the species and local climatic conditions. The reduction in forest productivity at the beech forest in Štítná was presumed to be mainly induced by edaphic drought (anisohydric behaviour). In contrast, reduced forest productivity at the spruce forest sites was presumably induced by both meteorological and hydrological drought events, especially at the moderately dry climate in Rájec. Overall, our analyses call for more studies on forest productivity across different forest types and contrasting climatic conditions, as this productivity is strongly dependent on species type and site-specific environmental conditions.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3