Monitoring Sulfur Content in Marine Fuel Oil Using Ultraviolet Imaging Technology

Author:

Zhang Zhenduo,Zheng Wenbo,Li Ying,Cao Kai,Xie MingORCID,Wu Peng

Abstract

The emission of SO2 from ships is an important source of atmospheric pollution. Therefore, the International Maritime Organization (IMO) has established strict requirements for the sulfur content of marine fuel oil. In this paper, a new optical noncontact detection technique for ship exhaust emissions analysis is studied. Firstly, the single-band simulation analysis model of the imaging detection technology for SO2 concentration in ship exhaust gas and the deep neural network model for the prediction of sulfur content were established. A bench test was designed to monitor the tail gas concentration simultaneously using online and imaging detection methods, so as to obtain the concentration data in the flue and the ultraviolet image data. The results showed that 300 nm had a higher inversion accuracy than the other two bands. Finally, a deep neural network model was trained with the SO2 concentration data from the inversion and the engine power, and the predictive model of sulfur content in marine fuel oil was thereby obtained. When the deep learning model was used to predict sulfur content, the prediction accuracy at 300, 310, and 330 nm was 73%, 94%, and 71%, respectively.

Funder

Fundamental Research Funds for the Central Universities

Postdoctoral Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference27 articles.

1. A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011

2. Reduction of GHG Emissions from Ships Third IMO GHG Study 2014—Final Report,2014

3. Annex VI of MARPOL 73/78, Regulations for the Prevention of Air Pollution from Ships and NOx Technical Code,2007

4. Transport impacts on atmosphere and climate: Shipping

5. Satellite remote-sensing monitoring technology and the research advances of SO2 in the atmosphere;Zhao;J. Saf. Environ.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3