Author:
Xiong Yuanhui,Wu Kuijun,Yu Guangbao,Chen Zhenwei,Liu Linmei,Li Faquan
Abstract
Nitrogen dioxide (NO2) absorption correction of the sulfur dioxide (SO2) camera was demonstrated for the first time. The key to improving the measurement accuracy is to combine a differential optical absorption spectroscopy (DOAS) instrument with the SO2 camera for the real-time NO2 absorption correction and aerosol scattering correction. This method performs NO2 absorption correction by the correlation between the NO2 column density measurement of the DOAS and the NO2 optical depth of the corresponding channel from the SO2 camera at a narrow wavelength window around 310 and 310 nm. The error of correction method is estimated through comparison with only using the second channel of the traditional SO2 camera to correct for aerosol scattering and it can be reduced by 11.3% after NO2 absorption corrections. We validate the correction method through experiments and demonstrate it to be of greatly improved accuracy. The result shows that the ultraviolet (UV) SO2 camera system with NO2 absorption corrections appears to have great application prospects as a technology for visualized real-time monitoring of SO2 emissions.
Funder
National Key Research and Development Program of 306 China
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献