An Assessment of the Impacts of Climate Variability and Change in KwaZulu-Natal Province, South Africa

Author:

Ndlovu Mendy,Clulow Alistair D.,Savage Michael J.,Nhamo LuxonORCID,Magidi JamesORCID,Mabhaudhi TafadzwanasheORCID

Abstract

Rainfall and air temperature variability pose the greatest risk to environmental change. Past trends in rainfall and air temperature facilitate projecting future climate changes for informed policy responses. We used a combination of the normalised difference vegetation index (NDVI) and observed data from 1968 to 2017 to assess changes in rainfall, moisture stress, and air temperature variability over time on bioclimatic regions of KwaZulu-Natal (KZN) Province, South Africa. Indicators used included consecutive dry days (CDDs), consecutive wet days (CWDs), very heavy rainfall days (R20), monthly maximum daily maximum air temperature (TXx), monthly minimum daily minimum air temperature (TNn), the total number of rainfall days, and monthly air temperature averages. Trends in rainfall and moisture stress are notable in different bioclimatic regions across the province. However, these trends are diverse, in general, and spatially different across and within the bioclimatic regions. Further, related rainfall indicators do not respond in the same way as would be expected. Air temperature trends were consistent with global trends and land–air temperature anomalies. Although daytime air temperatures showed a positive trend, extreme air temperature events and increases are predominant in inland regions. Night-time air temperatures showed an upward trend in most stations across KZN. Local weather-and-climate related characteristics are evolving due to climatic variability and change. The study shows that changes in climatic activities are detectable at a local level from existing historical weather data; therefore, adaptation strategies should be contextualised to respond to local and area-specific challenges.

Funder

uMngeni Resilience Project

Wellcome Trust

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3