Understanding the Major Impact of Planetary Boundary Layer Schemes on Simulation of Vertical Wind Structure

Author:

Zhang Lei,Xin JinyuanORCID,Yin Yan,Chang WenyuanORCID,Xue Min,Jia Danjie,Ma YongjingORCID

Abstract

The structure and evolution of the atmospheric planetary boundary layer (PBL) plays an important role in the physical and chemical processes of cloud–radiation interaction, vertical mixing and pollutant transport in the atmosphere. The PBL parameterization scheme describes the vertical transport of atmospheric momentum, heat, water vapor and other physical quantities in the boundary layer. The accuracy of wind field simulation and prediction is one of the most significant parameters in the field of atmospheric science and wind energy. Limited by the observation data, there are few studies on wind energy development. A 3D Doppler wind LiDAR (DWL) providing the high-vertical-resolution wind data over the urban complex underlying surface in February 2018 was employed to systematically evaluate the accuracy of vertical wind field simulation for the first time. 11 PBL schemes of the Weather Research and Forecasting Model (WRF) were employed in simulation. The model results were evaluated in groups separated by weather (sunny days, hazy days and windy days), observation height layers of wind field, and various observation wind speeds. Among these factors, the simulation accuracy is most closely related to the observation height layers of wind field. The simulation is fairly accurate at a height of 1000–2000 m, as most of the relative mean biases for wind speed and wind direction are less than 20% and 6% respectively. Below 1000 m, the wind speed and direction biases are about 30–150% m·s−1 and 6–30%, respectively. Moreover, when the observed wind speed was lower than 5 m·s−1, the biases were usually large, and the wind speed relative mean bias reaches up to 50–300%. In addition, the accuracy of the simulated wind profile is better in the range of 10–15 m·s−1 than other speed ranges, and is better above 1000 m than below 1000 m in the boundary layer. We see that the WRF boundary layer schemes have different applicabilities to different weather conditions. The WRF boundary layer schemes have significant differences in wind field simulations, with larger error under the complex topographies. A PBL scheme is not likely to maintain its advantages in the long term under different conditions including altitude and weather conditions.

Funder

National Key Research and Development Program of China

the CAS Strategic Priority Research Program

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3