Evaluation of F10.7, Sunspot Number and Photon Flux Data for Ionosphere TEC Modeling and Prediction Using Machine Learning Techniques

Author:

Benoit Andres Gilberto Machado da SilvaORCID,Petry AdrianoORCID

Abstract

Considering the growing volumes and varieties of ionosphere data, it is expected that automation of analytical model building using modern technologies could lead to more accurate results. In this work, machine learning techniques are applied to ionospheric modeling and prediction using sun activity data. We propose Total Electron Content (TEC) spectral analysis, using discrete cosine transform (DCT) to evaluate the relation to the solar features F10.7, sunspot number and photon flux data. The ionosphere modeling procedure presented is based on the assessment of a six-year period (2014–2019) of data. Different multi-dimension regression models were considered in experiments, where each geographic location was independently evaluated using its DCT frequency components. The features correlation analysis has shown that 5-year data seem more adequate for training, while learning curves revealed overfitting for polynomial regression from the 4th to 7th degrees. A qualitative evaluation using reconstructed TEC maps indicated that the 3rd degree polynomial regression also seems inadequate. For the remaining models, it can be noted that there is seasonal variation in root-mean-square error (RMSE) clearly related to the equinox (lower error) and solstice (higher error) periods, which points to possible seasonal adjustment in modeling. Elastic Net regularization was also used to reduce global RMSE values down to 2.80 TECU for linear regression.

Funder

Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul - FAPERGS

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3