Spatiotemporal Analysis of Regional Ionospheric TEC Prediction Using Multi-Factor NeuralProphet Model under Disturbed Conditions

Author:

Huang Ling,Wu HanORCID,Lou YidongORCID,Zhang Hongping,Liu Lilong,Huang LiangkeORCID

Abstract

The ionospheric total electron content (TEC) is susceptible to factors, such as solar and geomagnetic activities, resulting in the enhancement of its non-stationarity and nonlinear characteristics, which aggravate the impact on radio communications. In this study, based on the NeuralProphet hybrid prediction framework, a regional ionospheric TEC prediction model (multi-factor NeuralProphet model, MF-NPM) considering multiple factors was constructed by taking solar activity index, geomagnetic activity index, geographic coordinates, and IGS GIM data as input parameters. Data from 2009 to 2013 were used to train the model to achieve forecasts of regional ionospheric TEC at different latitudes during the solar maximum phase (2014) and geomagnetic storms by sliding 1 day. In order to verify the prediction performance of the MF-NPM, the multi-factor long short-term memory neural network (LSTMNN) model was also constructed for comparative analysis. At the same time, the TEC prediction results of the two models were compared with the IGS GIM and CODE 1-day predicted GIM products (COPG_P1). The results show that the MF-NPM achieves good prediction performance effectively. The RMSE and relative accuracy (RA) of MF-NPM are 2.33 TECU and 93.75%, respectively, which are 0.77 and 1.87 TECU and 1.91% and 6.68% better than LSTMNN and COPG_P1 in the solar maximum phase (2014). During the geomagnetic storm, the RMSE and RA of TEC prediction results based on the MF-NPM are 3.12 TECU and 92.86%, respectively, which are improved by 1.25 and 2.30 TECU and 2.38% and 7.24% compared with LSTMNN and COPG_P1. Furthermore, the MF-NPM also achieves better performance in low–mid latitudes.

Funder

Guangxi Science and Technology Base and Talent Project

Guangxi Natural Science Foundation of China

Guangxi Key Laboratory of Spatial Information and Geomatics

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference32 articles.

1. The International Reference Ionosphere Model: A Review and Description of an Ionospheric Benchmark;Bilitza;Rev. Geophys.,2022

2. Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users;Klobuchar;IEEE Trans. Aerosp. Electron. Syst.,1987

3. Bent, R.B., Llewellyn, S.K., Nesterczuk, G., and Schmid, P. (1975). Effect of the Ionosphere on Space Systems and Communications, National Technical Information Service.

4. A new version of the NeQuick ionosphere electron density model;Nava;J. Atmos. Sol. Terr. Phys.,2008

5. Broadcast ionospheric delay correction algorithm using reduced order adjusted spherical harmonics function for single-frequency GNSS receivers;Abhigna;Acta Geophys.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3