Spatial and Temporal Variations of Airborne Poaceae Pollen along an Urbanization Gradient Assessed by Different Types of Pollen Traps

Author:

Jetschni JohannaORCID,Jochner-Oette Susanne

Abstract

Grass pollen allergy is widespread all around the globe. With an increasing number of people living in cities, the examination of grass pollen levels within cities and their surroundings has increased in importance. The aim of this study was to examine different temporal and spatial scales of grass pollen concentration and deposition across urban and semi-rural environments in the years 2019 and 2020. We installed different types of pollen traps in the city of Ingolstadt (Bavaria, Germany) and its surroundings: volumetric pollen traps at roof level to assess background pollen concentration and gravimetric pollen traps and portable volumetric traps at street level. We considered grass pollen concentration and deposition in the context of land use and management. Our data showed that the grass pollen season in 2020 was longer and more intense than in 2019. Background grass pollen concentration was generally higher at the semi-rural site in both years: peak values were eight times (2019) and more than four times (2020) higher, and Seasonal Pollen Index was more than four times and almost three times higher in 2019 and 2020, respectively. Analyses of spatial variations measured at street level revealed higher numbers for pollen deposition and concentrations at semi-rural than at urban sites. Recorded values were linked to local vegetation and the management of grass areas surrounding the traps. Analyses of diurnal variations at street level in June 2019 showed that pollen concentration for all sites, independent of their degree of urbanization, were highest at noon (22.2 pollen grains/m³ vs. 8.5 pollen grains/m³ in the morning and 10.4 pollen grains/m³ in the evening). Diurnal variations at roof level showed similarities for the same days but differed when considering the whole season. Our data suggest the importance of the management of grass areas as areas cut earlier have a decreased amount of emitted pollen.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3